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a b s t r a c t 

Financial markets (share markets, foreign exchange markets and others) are all character- 

ized by a number of universal power laws. The most prominent example is the ubiquitous 

finding of a robust, approximately cubic power law characterizing the distribution of large 

returns. A similarly robust feature is long-range dependence in volatility (i.e., hyperbolic 

decline of its autocorrelation function). The recent literature adds temporal scaling of trad- 

ing volume and multi-scaling of higher moments of returns. Increasing awareness of these 

properties has recently spurred attempts at theoretical explanations of the emergence of 

these key characteristics form the market process. In principle, different types of dynamic 

processes could be responsible for these power-laws. Examples to be found in the eco- 

nomics literature include multiplicative stochastic processes as well as dynamic processes 

with multiple equilibria. Though both types of dynamics are characterized by intermittent 

behavior which occasionally generates large bursts of activity, they can be based on funda- 

mentally different perceptions of the trading process. The present paper reviews both the 

analytical background of the power laws emerging from the above data generating mech- 

anisms as well as pertinent models proposed in the economics literature. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

While research on power laws in income and wealth

dates back to the nineteenth century (Pareto), the atten-

tion on power laws in financial data is relatively recent.

The first ever manifestation of power laws in finance

can probably be found in Mandelbrot [99] followed by
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Eugene Fama’s elaboration (Fama [43] ) published as the

immediately succeeding paper in the same issue of the

Journal of Business . This breakthrough very much domi-

nated the discussion over the next thirty(!) years or so

with an immense number of papers dedicated to providing

supporting or contradicting evidence for the Paretian or

Levy stable hypothesis. While the dust has settled over

the last decade and the power-law behavior of large price

changes now counts as one of the most pervasive findings

in financial economics, it had remained the only power

law under discussion in this are a for quite some time. 

Only recently was it joined by other candidates for

Pareto-like behavior. By now well accepted within the

scientific community is a second power law characterizing

the temporal dependence structure of volatility. However

one tries to proxy the unobservable quantity ‘volatility’
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(most straightforwardly via the squares or absolute values 

of financial returns), the autocorrelations of these entities 

appear to decay hyperbolically, i.e. Pareto-like. Although 

this feature is linked to the long known clustering of 

volatility in financial markets, the fact that the depen- 

dency in the fluctuations is of a long-range type had only 

been realized in the nineties. Credit for this observation is 

probably due to Ding et al. [37] , published in the Journal 

of Empirical Finance . Later on, several papers by physicists 

emphasized the power law nature of this finding and its 

potential root in complex market interactions (cf. Lux [89] ). 

The power laws in returns and in volatility seem to be in- 

timately related: none of them was ever observed without 

the other and it, therefore, seems warranted to interpret 

them as the joint essential characteristics of financial 

data. 

Very recently additional power laws have entered the 

scene: transaction volume (which is strongly correlated to 

volatility) also appears to be characterized by long-range 

dependence (although it is not clear whether volatility and 

volume share the same degree of long memory). Availabil- 

ity of high- frequency tick-by-tick data has furthermore re- 

vealed other types of power-law behavior, such as a power 

law for the number of trades in the New York Stock Ex- 

change Trades and Quotes Database, cf. Plerou et al. [105] . 

Similar results are reported for the Japanese stock market, 

cf. Takayasu [118] . 

The plan of the remainder of this paper is the follow- 

ing: Section 2 gives a more formal description of the main 

financial power laws characterizing returns and volatility 

together with a survey of pertinent literature. After having 

set the scene, we turn to explanatory models. Section 3 

deals with the so-called rational bubble model which 

emerged as a potential explanation of financial power laws 

from the standard body of rational expectations models 

in economics. Interestingly, this approach points to multi- 

plicative stochastic processes as a type of data generating 

process with generic power-laws. This interesting property 

of the underlying process notwithstanding, the rational 

bubble model makes grossly incorrect numerical predic- 

tions about the magnitude of the exponent. In Section 4 

we, therefore, turn to more recently proposed models in 

the behavioral finance literature. From the diversity of 

available approaches and models, we try to single out the 

basic ingredients and mechanisms leading to true or at 

least apparent power laws in simulated data. Section 5 

attempts to draw some overall conclusions from the hith- 

erto available body of literature on potential explanations 

of financial scaling laws. 

2. Empirical power laws in finance 

The modern literature in this area starts with Mandel- 

brot [99] and Fama [43] , who both proposed the so-called 

Paretian or Levy stable distributions as statistical models 

for financial returns 1 (cotton futures were analyzed in 
1 The quantity of interest in empirical research in financial economics is 

typically ‘returns’ defined as relative (or logarithmic) price changes over 

a certain time horizon. Research on the statistical properties of returns 

started with data at weekly or monthly frequencies but has moved on 
Mandelbrot’s paper). The theoretical appeal of this fam- 

ily of distributions is its stability under aggregation. At 

the time of publication of these papers, it had already 

been known for some time that a Generalized Central 

Limit Law holds for distributions with non-convergent 

(infinite) second moments: while existence of the sec- 

ond moment warrants convergence of sums of random 

variables (at least in the IID case and under weak de- 

pendence) towards the Gaussian, non-convergence of the 

variance implies convergence of the distribution of sums 

towards members of the family of Levy stable distribu- 

tions. Under this perspective, the pronounced deviation 

of histograms for financial returns from the shape of the 

Normal distribution together with their apparent additivity 

(daily returns can be expressed as the sum of all intra- 

daily price changes) was interpreted as striking evidence 

in favor of the Levy hypothesis. The Levy distributions 

are characterized by an asymptotic power-law behavior of 

their tails with an index α (called the characteristic expo- 

nent) which implies a complementary cumulative density 

function of returns (denoted by ret in the following) which 

in the tails converges to: 

P r(| ret| > x ) ≈ x −α. (1) 

The Levy hypothesis restricts the power-law for returns 

to the admissible range of α ∈ (0 , 2) which indicates the 

mentioned non-convergence of the second moment (with 

α < 1 not even the mean would converge). Empirical esti- 

mates based upon the Levy model typically found α hov- 

ering around 1.7. 

While this result was confirmed again and again 

when the parameters of the Levy laws were estimated 

themselves, other studies raised doubts in the validity of 

the Levy hypothesis by questioning the stability-under- 

aggregation property of these estimates (Hall et al., [60] ) 

or pointed to apparent convergence of sample second 

moments (Lau et al., [77] ). From the early nineties, how- 

ever, it became common practice to concentrate on the 

tail behavior of the distribution itself and estimate its 

decay parameter via conditional maximum likelihood 

without assuming a particular distributional model (Hill 

[63] ). The pertinent literature gradually converged to the 

insight of an exponent significantly larger than 2 and 

mostly close to 3, cf. Jansen and de Vries [69] ; Lux [85]

and Werner and Upper [126] , among others. These results 

nicely agree with estimates obtained by physicists via 

their typical log–log regression approach (Cont et al., [33] ; 

Gopikrishnan et al., [58] ). The approximate cubic form of 

the power-law of returns is by now accepted as a uni- 

versal feature of practically all types of financial markets 

(from share markets and futures to foreign exchange and 

precious metal markets). Note that this finding implies 

rejection of the time-honored Levy hypothesis as α ≈ 3 

means that the decay of the outer part of the distribution 

is faster than allowed by this family of distributions. The 

Levy distributions might still be relevant for returns on 

venture capital and R&D investments, cf. Casault et al. 

[23] . It seems plausible that these types of very risky 
to high frequency data over time (daily and intra-daily data up to the 

highest frequencies at which all tick-by-tick changes are recorded). 
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investments could fall into a different class of distributions

or stochastic processes with even more pronounced tails.

It is interesting to note that the unconditional distribution

of daily returns appears to be remarkably close to the

Student t with 3 degrees of freedom (Fergussen and Platen

[45] ). However, financial returns are not identically and in-

dependently distributed, and, thus, are better represented

by a stochastic process (or a behavioral model) rather than

a time-invariant distribution. 

The second type of power laws relates to the opales-

cent concept of volatility of price fluctuations. Focusing on

absolute returns, | ret |, as one of its most frequently ana-

lyzed manifestations, the pertinent power law applies to

their autocovariance function: 

E [ | re t t | · | re t t−�t | ] ≈ �t −γ . (2)

Although the precise value of γ has received less publicity

than that of α (maybe because it is not estimated directly

but rather via its relation to the so-called Hurst expo-

nent or related measures (Lux and Ausloos [89] ), reported

statistics are also remarkably uniform across time series

with typical values around γ = 0.2–0.3 (Ding et al. [37] ; Lo-

bato and Savin [82] ; Vandewalle and Ausloos [120] ; Van-

dewalle and Ausloos [121] ; So [111] , Ray and Tsay [107] ).

It is also well-known that volatility is highly correlated

with trading volume, and long-range dependence carries

over to volume as well (Lobato and Velasco [83] ; Rossi and

de Magistris [108] , Galati [52] ). Fig. 1 provides an exam-

ple for the typical behavior of financial data, using a large

series of daily observations for the New York Stock Ex-

change Composite Index. The somewhat low decay param-

eter γ = 0.14 for volatility is a consequence of fitting the

whole ensemble of autocorrelations up to lag 200 by one

single power law. Concentrating on longer lags we would

have obtained a larger decay parameter in line with other

estimates. 

It is worth mentioning that recently mounting evidence

speaks in favor of multi-scaling in the temporal dependence

structure of financial fluctuations: rather than the simple

scaling (power) law (2) we might indeed face a continuum

of scaling laws for various powers of absolute returns: 

E [ | re t t | q · | re t t−�t | q ] ≈ �t −γ ( q ) . (3)

Note that any power q of absolute returns can be in-

terpreted as an alternative measure of volatility. With the

multi-scaling in Eq. (3) we, thus, get a much more detailed

picture of the temporal development of financial fluctua-

tions, cf. Mandelbrot [100] ; Calvet and Fisher [19,20] ; Lux

[88] , Lux and Segnon [95] . Most excitingly, a non-linear de-

pendence of the scaling parameter γ on the power q is

also a key characteristic of turbulent fluids and has moti-

vated the development of so-called multi-fractal models in

statistical physics. Recent research shows that these mod-

els provide a very versatile, yet simple framework to model

asset returns in a parsimonious way, and they have been

found to perform at least as good as the time-honored

GARCH models in terms of forecasting volatility, and often

outperform the later to some extent (cf. Calvet and Fisher

[20] , Lux and Morales-Arias [92] , Lux et al. [93] ). 

It is worth emphasizing that the power-law behavior of

large returns and their fluctuations seem to be truly uni-
versal and can be found without exception in all financial

data. This is quite in contrast to many other ‘stylized facts’

in economics, for example concerning macroeconomic data

(such as GDP, inflation rates etc.). It should also be pointed

out that the above power-laws are not at all esoteric con-

cepts. Quite to the contrary, they are of tantamount prac-

tical importance in financial engineering: the probabilistic

law governing large returns ( Eq. 1 ) can be applied directly

for an assessment of the inherent risk of extreme events

(i.e., crashes). Similarly, models covering the temporal de-

pendence of volatility depicted in Eqs. (2) and ( 3 ) are of

immediate practical use in predicting the future extend of

price fluctuations. 

Various authors have claimed that additional power

laws exist in the financial arena: Plerou et al. [105] find

that high-frequency data from the U.S. stock market ex-

hibit the following regularities: trading volume (V) behaves

like: 

P r(V > x ) ≈ x −1 . 5 , (4)

and the number of trades (N) follows a law: 

Pr ( N > x ) ≈ x −3 . 4 . (5)

Additional results on the distribution of inter-

transaction times and related quantities can be found

in several studies (e.g. Takayasu [118] ). So far, these ad-

ditional regularities have mainly been discussed in the

physics literature but have hardly been acknowledged by

economists. Because of the limited number of available

studies, it is also not clear at present whether these

findings are of a similarly universal nature like (1)–(3). The

only exception here is temporal dependence of transaction

volume for which substantial statistical evidence has al-

ready been gathered and for which pretty much the same

pattern has been found as for absolute returns in previous

studies (e.g. Lobato and Velasco [83] ). However, the precise

numerical laws given in Eqs. (4) and (5) do not appear to

be as ubiquitous like the ‘cubic’ law of returns: Farmer and

Lillo [44] , for instance, report different behavior of these

quantities in the London Stock Exchange, Balakrishnan

et al. [11] also find no time-invariant and homogeneous

power-law behavior across stocks in the U.S. markets. 

3. Power laws in orthodox financial economics: 

stochastic approaches and rational bubbles 

Standard textbooks on theoretical and empirical finance

(see O’Hara [102] , for a comprehensive treatment of behav-

ioral models, and Campbell et al. [21] for a similarly com-

prehensive survey of empirical techniques) lack explicit en-

tries on the power-law behavior of financial data. It is only

via stochastic processes with asymptotic power law behav-

ior that they implicitly take into account the existence of

the universal scaling laws highlighted in Section 2 . Until

very recently, financial power laws have, therefore, only

been taken into account under a purely statistical perspec-

tive. The hallmark of this literature is the (G)ARCH (Gener-

alized Autoregressive Conditional Heteroskedasticity) class

of processes introduced in Engle [42] . GARCH essentially

models returns as a random process with a time-varying



6 T. Lux, S. Alfarano / Chaos, Solitons and Fractals 88 (2016) 3–18 

Fig. 1. Illustration of the main power law characteristics of financial data. Our data are daily recordings of the New York Stock Exchange Composite Index 

over the period 1988–1998 (a total of 2782 observations). Instead of the index itself, we show its returns defined as the log increments between adjacent 

trading days (upper left panel). These already show the two main ‘stylized facts’: a large number of extreme positive and negative realizations, and the 

clustering of volatility, i.e. characteristic switches between turbulent and more tranquil episodes. The power law nature of the first feature is underlined by 

inspecting the log histogram of (absolute) returns (upper right hand). In contrast to a Normal distribution with the same variance (solid line), the triangles 

for the empirical distribution show a prolongation in the tail which in its outer part has an almost linear shape in agreement with Eq. (1) . The lower 

panels show absolute returns as a straightforward measure of volatility (left) and their autocorrelations (right). The ACF decays extremely slowly and even 

after 200 lags has significantly positive entries (95% boundaries are demarcated by broken lines). This hyperbolic rather than exponential decay is in line 

with Eq. (2) . 
variance which shows autoregressive dependence, i.e. 

ret t = σt ε t (6) 

σ 2 
t = α0 + α1 ε 

2 
t−1 + βt σ

2 
t−1 , 

with ε t ∼ N (0, 1). As this type of auto-correlation is 

readily apparent in any plot of a financial time series 

(cf. Fig. 1 ), it is not too surprising that GARCH captures 

the short-run dynamics of volatility quite well. Implying 

exponential rather than hyperbolic decay of the volatility 

autocorrelations it nevertheless falls short of providing 

a stochastic process in accordance with the long mem- 

ory property depicted in Eq. (2) . However, even with a 

Gaussian distribution of the increments, the compound 

unconditional distribution resulting from (6) is character- 

ized by fat tails and hence is in accordance with Eq. (1) . 

This relatively simple statistical recipe, therefore, already 

allows to reproduce one of the universal laws of returns. 

Refinements of the GARCH approach have, in fact, also 

covered the scaling in the autocovariances via imposition 

of an infinite number of lags with hyperbolically decaying 

weights in the difference equation governing the volatility 

dynamics, cf. Baillie et al. [9] . 

Although these statistical models and the myriads of 

variations on this topic which have come out in the lit- 

erature are important tools in financial engineering, they 
do not provide an avenue towards an explanation of the 

empirical regularities. In fact, until very recently, standard 

models in the theoretical literature were unable to ex- 

plain even the phenomenological aspects covered by the 

GARCH models, let alone the asymptotic laws in Eqs. (2) 

and (3) with their perplexingly precise numerical manifes- 

tation in the data. To be honest, these regularities were 

neither well-known among financial economists nor did 

their standard models provide an easy avenue towards ex- 

planations of such power laws. 

There is one important exception though in that one 

ingredient of the received body of models, in fact, pro- 

duces power law statistics as an immediate consequence 

of its underlying model structure, which, however, has 

also been realized only very recently. This class of models 

is known as models of speculative bubbles with rational 

expectations (RE bubbles). This theory attempts to explain 

the rather obvious frequent deviation of market prices 

from their underlying fundamental value (also known as 

the ‘intrinsic’ value of an asset which is determined by 

current expectations about future earning prospects) with- 

out sacrificing the ‘rationality’ assumption of traditional 

asset pricing models. 

Before proceeding to RE bubbles, let us introduce 

the standard asset pricing model of the textbook Efficient 
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2 This is true under very mild conditions on the structure of the ran- 

dom difference equation. A glance at the additional conditions stated in 

Kesten’s theorem, in fact, shows that they will only be violated by very 

particular processes, cf. Lux and Sornette [96] . It is worthwhile to note 

that GARCH and other phenomenological models of time-varying volatil- 

ity dynamics can also be interpreted as multiplicative stochastic processes 

(cf. de Haan et al. [36] ) 
Market Paradigm. The starting point of this approach is the

formula for fair or arbitrage-free valuation of an asset: 

p t = δE[ p t+1 + d t+1 | I t ] (7)

with p t the price at time t, δ < 1 the discount factor

reflecting the time preference of agents, and d t denoting

dividends at time t . Eq. (6) says that a fair and arbitrage-

free price should be identical to the discounted expected

value (conditional on the current information set I t ) of

next period’s price plus the dividend paid out in that

period. With identical expectations of all agents, the

equilibrium price should converge to this benchmark.

Otherwise, agents would sell/buy as long as an inequality

prevails between the right-hand side and left-hand side

of Eq. (7) . Imposing a so-called ‘transversality condition’,

lim i →∞ 

δi E[ p t+ i | I t ] = 0 one can replace p t+1 by the per-

tinent arbitrage-free pricing equation at period t + 1 (of

course, Eq. (7) has to hold in all periods). Continuing

along these lines by further substitution of the pertinent

equations at t + 2 , t + 3 , . . . , one obtains: 

p t = p f,t = 

∞ ∑ 

i =1 

δi E [ d t+ i | I t ] . (8)

Eq. (8) postulates that the price should always equal the

discounted expected future stream of dividends which is

what is also often called the fundamental value of the

asset, p f, t . This pricing formula can be seen as a manifesta-

tion of the Efficient Market Paradigm postulating that prices

reflect all available information about the fundamental

factors of the underlying asset in an unbiased manner and

that they should immediately react to forthcoming new

information about these fundamentals. It is worthwhile to

note in passing that the traditional view of the Efficient

Market Hypothesis is not necessarily inconsistent with

observations of power laws in financial data since it re-

mains agnostic about the structure of the ‘news process’

driving returns. However, it would have to attribute their

origin entirely to exogenous factors: all power laws would

have to be explained by fundamental valuation factors,

E[ d t+ i | I t ] , exhibiting these same characteristics which are

then reproduced by price changes reflecting changes in

fundamentals. Unfortunately, ‘fundamentals’ are essentially

unobservable and cover a bundle of diverse factors such

as firm-specific events, political influences etc. 

As pointed out by Blanchard and Watson [13] it re-

quires only a minor modification of the above assumption,

to allow for deviations of prices from fundamental values.

Namely, though mathematically convenient, the ‘transver-

sality condition’ needed to proceed from (7) to (8) is by no

means necessary from a theoretical perspective. Dropping

it, however, opens a Pandora’s box of possible asset price

paths deviating from fundamental valuation. Blanchard and

Watson [13] first remarked that without the transversality

condition, Eq. (7) does not necessarily exclude per se such

weird phenomena like speculative overvaluation and sub-

sequent crashes. Quite the opposite, it allows the price to

contain a bubble component B t by which it deviates from

the fundamental value p f, t : 

p t = p f,t + B t . (9)
Earlier literature had avoided this possibility by assuming

B t = 0 . Nevertheless, this framework is still far away from

an agnostic view of “anything goes” in financial markets.

Rather, the rational expectations assumption in Eq. (7) still

poses heavy restrictions on admissible bubble dynamics. In

particular, only those bubbles are allowed which satisfy: 

B t = δE[ B t+1 | I t ] , (10)

as otherwise e.g. (7) would not hold. 

A fairly general class of processes obeying (10) can be

written as: 

B t = a t B t−1 + ε t (11)

with at a t ∈ A = { a 1 , a 2 , . . . , a n } occurring with probabilities

π1 , π2 , ..., πn and ε t IID with mean zero. The only ad-

ditional restriction which the a i have to meet is E[ a t ] =
n ∑ 

i =1 

πi a i = 

1 
δ

in order to be in harmony with (10). With both

a t and ε t stochastic variables, the bubble process (11) is a

so-called multiplicative stochastic process . This kind of ran-

dom difference equation had already been studied com-

prehensively in Kesten [72] who showed that multiplica-

tive processes are generic power-law generators . 2 . He also

showed that the power-law exponent for the unconditional

distribution of the underlying dynamic variable can be pre-

cisely determined from the distribution of the multiplica-

tive component. In our notation, the power-law applies to

deviations from the fundamental value (B t ) : P rob(| B t | >
x ) ∼ x −μ with μ given by: 

E[ | a t | μ] = 1 . (12)

Fig. 2 a and b shows an illustration of the resulting time

series and the distribution of B t which, of course, agrees

with the theoretical result. Lux and Sornette [96] show

that the power-law in the bubble component carries over

directly to price changes and also dominates the distribu-

tion of returns. 

What generates the power-law tails of the bubble

model? Since the mean value of a t is 1/ δ > 1, the set A has

to include at least one element larger than unity (typically,

the smallest a i would be set to zero to allow for the possi-

bility of a total crash of the bubble). Hence, the realizations

of a i will switch between values smaller and larger than

one. In a deterministic setting, the former would guarantee

convergence towards B ∞ 

= 0 while the later would yield

an explosive dynamics (which would ensue also if we only

allow for one single a t = 1 /δ > 1 ). The time-variation of

a t , then, generates an intermittent amplification of fluctu-

ations which, however, only continues as long as it is not

interrupted by realizations of a t < 1 (cf. Fig. 2 for an ex-

ample). It is remarkable that, in general, the additive noise

component, ε t , has no influence at all on the emerging

power-law exponent μ which is fully determined by the

distribution of a t . This means that the resulting exponent



8 T. Lux, S. Alfarano / Chaos, Solitons and Fractals 88 (2016) 3–18 

Fig. 2. Example of a RE bubble process with A = {0, 0.9, 1.3} occurring with probabilities π(0) = 0 . 1 , π(0 . 9) = 0 . 4 and π(1 . 3) = 0 . 5 , and additive stochastic 

component ε t following a Normal distribution with mean zero and standard deviation 0.1. The simulation illustrates how this framework generates repeated 

outbreaks of bubbles (periods of deviations form the fundamental values) which all end in crashes leading to a reversal of the price to its fundamental 

value. The inlet shows a loglog plot of the inverse of the cumulative distribution function of price changes from the same RE bubble process. The theoretical 

(exact!) power-law index can be calculated from Eq. (12) . With a simulation over 10 6 time steps, the resulting μ = 0 . 92 (for a discount rate δ = 0 . 99 ) can 

be nicely observed over at least four orders of magnitude. The slight deviation for very large values is due to the scarcity of observations in the very far 

tails. 

3 Think of analyses of future effects of fiscal or monetary policy mea- 

sures: a rational expectations framework allows to single out their purely 

intrinsic effects without mingling them with problems of misperceptions 

of agents of the economic environment. 
μ, in fact, only reflects the intrinsic dynamics of rational 

speculative bubbles (the way B t depends on B t−1 ) while in 

a sense external factors represented by ε t as well as the 

fundamental factors affecting the component p f, t in the as- 

set price given by Eq. (9) have only a very subordinate role. 

Eq. (11) with arbitrary distributions of its multiplica- 

tive and additive components, a t and ε t , is a multiplica- 

tive stochastic difference equation in its most general form. 

The only restriction on multiplicative processes that could 

be used as rational bubble processes in a finance setting 

is, therefore, the restriction stemming for the assumption 

of rationality or consistency of expectations (i.e., all agents 

have correct expectations about both the future develop- 

ment of the bubble as well as the fundamental compo- 

nent of the asset price): E[ a t ] = 1 /δ > 1 . Unfortunately, as 

pointed out by Lux and Sornette [96] , it is exactly this 

requirement which restricts the admissible range of out- 

comes to μ < 1 - far off from the empirical findings of an 

exponent around three. The important consequence is that 

this simple and appealing theory of rational bubbles rather 

than being in harmony with empirical power-laws pro- 

duces results that are at odds with empirical observations. 

Since this result applies to the entire class of RE bubble 

models, it seems that economists have to accept deviations 

from the ideal case of perfect rationality in order to explain 

fat tails and clustered volatility. Furthermore, the assump- 

tion of ‘rational expectations’ in economic models has pro- 

voked mounting criticism as it requires a capacity of com- 

putation and information processing of agents far beyond 

imagination and immense effort s have been devoted re- 

cently to introduce boundedly rational behavior into eco- 

nomic models, cf. Brenner [15] . It is also worthwhile to 

note that ‘rationality’ of expectations can be tested em- 

pirically and there exists a large body of such tests whose 
overall outcome is that rational expectations can be ‘over- 

whelmingly rejected’ (cf. MacDonald [97] ). 

4. Multi-agent models in behavioral finance 

4.1. Overview 

Although the rational bubble theory can be viewed as a 

generic power-law generator, it might appear inappropriate 

in more than one way. First, as we have seen, it generates 

power-laws which are definitely at odds with the empirical 

ones - and hence the perspective of analyzing scaling be- 

havior, in fact, shows the limitations of this approach. Sec- 

ond, it shares the conceptual problems of economic mod- 

els with ‘fully’ rational agents. As Mark Buchanan puts it: 

“To anyone who is not an economist, the orthodox per- 

spective that sees people as rational agents who always 

work out their rational self-interests and act on them, 

seems more than a little peculiar” (Buchanan [18] ). Clearly, 

the ‘full rationality’ assumption appears much too strong 

a statement in the eyes of the layman and seems to be 

in so striking contrast to observed real-life behavior to 

let it appear almost ridiculous for those who have not 

been brought up in this tradition. Although there might be 

good reasons to use the rationality postulate when tackling 

certain questions 3 and although the question of rational 

vs. non-rational expectations might be of minor concern 

for various economic problems, modeling economic phe- 

nomena governed by not-fully-rational behavior requires a 
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cent strand of literature analyses the implications of overconfidence of 

some traders and finds that this kind of misperception might even pro- 

vide an evolutionary advantage, e.g., Hirshleifer and Guo [64] . 
different approach. This is surely the case with financial

markets for which it has been observed that their immense

trading volume already raises doubts about common ra-

tionality and knowledge of such rationality on the part

of other agents (Leroy [79] ). Survey studies confirm that

market participants themselves attribute a large portion of

price fluctuations to bandwagon effects, overreaction and

speculative dynamics (Cheung and Wong [29] ). The re-

cently mounting literature on experimental asset markets

adds credibility to this view by showing that human sub-

jects typically produce price bubbles and crashes even in

simple laboratory markets (this by now immense literature

got started by Smith et al. [110] and has recently been sur-

veyed by Palan [104] ). 

From the power-law perspective, the universal cubic

law of price returns and the long-range correlations of

volatility suggest to view financial data as results of a so-

cial process of interacting agents. Models founded on ratio-

nal expectations including the RE bubbles theory contain

nothing of that sort: agents themselves are typically invis-

ible and enter via some equilibrium condition like eg. (7).

Of course, one could add a description of the typical be-

havior of a rational agent in this framework (the so-called

representative agent) but this approach excludes any inter-

action of traders and by its focus on steady state solutions

does not provide an avenue towards replicating distribu-

tional properties of financial data. More recently, there-

fore, a rapidly growing research area has purposely allowed

for deviations from ‘rational’ behavior formalizing financial

markets as evolving ecologies of multi-agent populations

of traders with diverse strategies and expectations. 

Due to the obvious diversity of trading motives and

strategies in real markets, such an approach had always

been virtually existent: Keynes’ famous beauty contest

parabola of the stock market (Keynes [73] ) undoubtedly

presupposes heterogeneous (and hence, non-rational) ex-

pectations. Early formal models of interacting groups of

traders can be found in Baumol [12] and Zeeman [129] .

As has become standard in most of the subsequent lit-

erature, these authors distinguish between two types of

traders: the first, so-called fundamentalists, views asset

prices as being determined by fundamental factors alone.

These traders would buy/sell if they consider the current

market price to be below/above the rationally computed

fundamental value (i.e. Eq. 8 ). The second group, mostly

called chartists or noise traders, would rather be convinced

that asset markets are driven by systematic trends and that

patterns exist that could be extracted by means of regres-

sions, moving averages or more complex procedures. Typ-

ically a short-cut representative rule (like trend-following

behavior) is used to introduce this second component into

the model. The market price, then, results from the inter-

play of the two groups and their respective demand and

supply. 

Hibernating over the highdays of the rational expecta-

tions paradigm, the recent literature has seen an enormous

surge of work along the lines of these early pioneers. 4 An-
4 In fact, the boundaries between rational and non-rational behavioral 

approaches have become extremely fuzzy. For example, an interesting re- 
other limitation had, however, to be overcome to tackle the

stylized facts of Section 2 . Namely, the interest in economic

models has typically been to trace out the effect of changes

of one (exogenous) economic variable on other, endoge-

nous variables characterizing some sort of market equi-

librium. Even with a diverse ensemble of traders, such a

comparative static approach is ill suited for explaining dis-

tributional characteristics of the data. One, therefore, has

to go beyond static models and beyond linear dynamics

to account for power-law phenomena as important overall

features characterizing financial time series. First attempts

at analyses of complex data generating processes with be-

havioral foundations appeared in the early nineties: lead-

ing examples are Kirman [74] , [75] and De Grauwe et al.

[34] who propose complex models of interacting specula-

tors and study their overall statistical characteristics. While

they did not focus on power-laws proper (then still not

broadly acknowledged), they both showed that their mod-

els could mimic the random walk nature of financial prices

although their data generating processes were both clearly

different from a random walk. Notably, both papers study

what we might describe as secondary stylized facts, typi-

cal results of certain - unsuccessful - tests of hypothesis of

exchange rate formation, and find results similar to those

obtained with empirical records. 

Evidence for volatility clustering as an emergent prop-

erty of a multi-agent model appeared first in Grannan and

Swindle [59] . Ramsey [106] offers a rather general per-

spective of how a statistical description of agents’ behavior

could give rise to time-varying moments as emergent

macroscopic characteristics of a market. Simultaneously,

first attempts appeared at designing market models with

heterogeneous autonomous agents using artificial intelli-

gence techniques (genetic algorithms, classifier systems,

neural networks) as expectation formation mechanisms.

Much of the early literature in this vein is preoccupied

with analysis of convergence or not of the learning process

of agents to homogeneous rational expectations equilibria

(Arthur et al. [8] ; Chen and Yeh [27] ; Arifovic [7] ). It

took a while for explanations of empirical characteristics

to become a topic in this strand of literature (LeBaron

et al. [78] ; Chen and Yeh [27] ; Lux and Schornstein [94] ).

Typically, some tendency towards fat tails and volatility

clustering is observed, although numerical results are

often far from empirical power laws. 5 

Another current emerging in the early nineties is micro-

scopic models of financial markets constructed along the

lines of multi-particle systems in statistical physics. The

first example here is Takayasu et al. [119] . Broadly simi-

lar approaches are Levy et al. [80] , [81] ; Bak et al. [10] and

Cont and Bouchaud [32] . Most of these contributions do

either not focus on power-laws or generate scaling laws
5 For example, in a comprehensive analysis of the seminal Santa Fe 

model of Arthur et al., Wilpert [128] observes that the decay of the auto- 

correlation of both volatility and volume is exponential rather than hy- 

perbolic. Interestingly, results become ‘better’ if one includes typical ele- 

ments of chartist/fundamentalist interaction. 



10 T. Lux, S. Alfarano / Chaos, Solitons and Fractals 88 (2016) 3–18 

 

different from the empirical ones. In a related approach, 

Sato and Takayasu [109] derive a multiplicative stochas- 

tic difference equation as an approximation to the dynam- 

ics of the microscopic stock market model proposed by 

Takayasu et al. [119] . Their model consists of a fixed num- 

ber of dealers who set limit prices at which they are pre- 

pared to buy or sell stocks. These thresholds are then mod- 

ified dynamically in reaction to past price trends. Trades 

occur when the difference between the maximum buy 

price and the minimum sell price is positive. The mar- 

ket price is recorded as the average between the marginal 

bid and ask. Since traders are assumed to follow the ten- 

dency of the market with their reservation prices, a self- 

amplifying mechanism comes into play. Its approximation 

via a stochastic difference equation leads to a structure 

similar to Eq (11) . Without any further restriction, realistic 

exponents can be generated if the parameters of the model 

are appropriately chosen. Similar feedback in similar mod- 

els brought about the same result in the framework of Bak 

et al. [10] . In the following, I review in more detail three 

dominant types of behavioral models which cover a large 

part of the hitherto available literature. 

4.2. Models inspired by statistical physics 

Cont and Bouchaud’s [32] model adopts a lattice-based 

percolation framework in which clusters of agents with 

synchronized behavior are formed. Allowing the clusters to 

enter on the demand or supply side of the market (with 

identical probability a ) or to stay inactive (with probabil- 

ity 1-2a ) and adding a typical price adjustment equation 

for the reaction on imbalances between demand and sup- 

ply one gets the following dependence of returns on the 

current configuration of clusters: 

ret t = 

p t − p t−1 

p t−1 

∼
∑ 

buy 

n s · s −
∑ 

sell 

n s · s , (13) 

with s the cluster sizes and n s the average number of clus- 

ters containing s sites on both the demand and supply side 

of the market. With this type of framework, it follows for 

small a that returns will inherit the well-known scaling 

law of the cluster size distribution which has been studied 

extensively in statistical physics. As Sornette et al. [112] put 

it in their sympathetic review of this approach: “This per- 

colation model thus applies physics knowledge collected 

over decades, instead of inventing new models for finan- 

cial fluctuations.”

Despite being a known candidate for generating power- 

laws, the percolation model has its shortcomings: first, 

in the basic variant described here it is without memory 

and, hence, unable to produce volatility correlations. Sec- 

ond, quite the opposite of multiplicative random processes, 

the percolation model is not a generic power-law mech- 

anism, it rather needs fine-tuning so that the probability 

for connection of lattice sites, say q , is close to the so- 

called percolation threshold q c , a critical value above which 

an infinite cluster (i.e. a cluster spanning the entire lat- 

tice) appears. What is more, the power-law emerging in 

Cont and Bouchaud’s case of infinite connections between 

sites is unrealistic: it leads to a power-law index 1.5, some 
way apart from the “universal cubic law”. Finite-size ef- 

fects and variations of parameters could generate alterna- 

tive power-laws anywhere between the Levy and the Gaus- 

sian regime, but finding a cubic law would necessitate a 

particular choice of model design (e.g. q slightly above q c , 

cf. Stauffer and Penna [115] ). 

The well-known structure of percolation models in 

physics and wide-spread availability of pertinent simula- 

tion software has motivated a large number of variations 

on the Cont–Bouchaud topic. It has been shown that auto- 

correlation of volatility (and possibly of volume, too) can 

be obtained by sluggish evolution of cluster configurations 

over time, cf. Stauffer et al. [114] . Similarly, if clusters dis- 

solve or amalgamate after transactions, more realistic re- 

turn distributions can be obtained (Eguiluz and Zimmer- 

mann [41] ). Additionally, fundamental values and feedback 

from market prices have been introduced to make the 

model more realistic by Chang and Stauffer [24] . Focardi 

et al. [47] consider latent connections which only become 

active in certain times, while Iori [66] investigates an Ising- 

type lattice model with interaction between nearest neigh- 

bors, but without the group dynamics of the percolation 

approach. Other extensions include market entries and exit 

of agents (Wang et al. [124] ) on imitation between clusters 

(Makowiec et al. [98] ). Still, one of the major drawbacks 

of this whole class of models is the extreme dependence 

of the resulting power laws on carefully adjusted param- 

eters near criticality. Whether and how the market might 

self-organize towards these critical points remains unclear. 

Though sweeping a system back and forth through these 

critical states might yield an interesting perspective (see 

Stauffer and Sornette [116] ), a behavioral underpinning of 

such a mechanism is missing. Some models have combined 

elements of the percolation or Ising-type group dynamics 

with a distinction between traders with different strate- 

gies. Investigating the interaction of fundamentalists and 

boundedly rational traders prone to herding effects (mod- 

eled via field effects in an Ising structure) Kaizoji et al. 

[70] obtain more realistic asset price dynamics than most 

models reviewed it this section before, which also are not 

restricted to particular parameter sets. However, the more 

generic reproduction of the stylized facts by models with 

heterogeneous trading strategies (see next section) sug- 

gests that this aspect of the model might be more rele- 

vant than the particular arrangement of agents along the 

lines of the Ising and other models from statistical physics. 

Kaizoji et al. [70] has nevertheless spawned a sizable liter- 

ature itself (e.g. Takaishi [117] ). 

Another recent model rooted in the statistical physics 

literature offers a very different avenue towards an expla- 

nation of financial power laws: Gabaix et al. [51] , [50] pro- 

vide a theoretical framework in which Eqs. (1) , ( 2 ), ( 4 ) and

( 5 ) are combined with the additional empirical observation 

of a Zipf law for the size distribution of mutual funds and 

a square root relationship between transaction volume and 

price changes ( �p ≈ V 

0.5 ). In this theory, scaling of price 

changes according to the cubic law (1) results from scaling 

of transactions which in turn is a consequence of the Zip- 

fian size distribution of big investors. This explanation via 

multiple transmissions of power laws between various eco- 

nomic quantities is actually quite different from all other 
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6 Since optimistic (pessimistic) noise trader would buy (sell), their 

net contributions to excess demand simply depends on the difference 

N O − N p . 
behavioral models. Since the ultimate source of financial

power laws in Gabaix et al. is, therefore, the (exogenous)

Zipf distribution of large investors, this view is somewhat

similar to the efficient market hypothesis (which attributes

the power laws to the exogenous news arrival process),

while all other models rather view these laws as an emer-

gent manifestation of the intrinsic dynamics of speculative

markets. As already mentioned above, the power laws for

price impact and trading volume have been disputed in

subsequent literature. Farmer and Lillo [44] , for instance,

emphasize that these regularities are not uniformly found

for all stock markets, namely that often price impact grows

more slowly than hypothesized by Gabaix et al., and trad-

ing volume would not even follow a power-law distribu-

tion in all markets. Weber amd Rosenow [125] show that

large stock price changes cannot be explained by trading

volume alone, but also depend on measures of liquidity of

the pertinent market (and on the current density of limit

orders). 

4.3. Interaction models of financial markets 

One of the sources from which interacting agent mod-

els have developed is incorporation of herding and conta-

gion phenomena into economic models. A first approach

in this direction can be found in Kirman [74] and Kirman

[75] who adapts a simple stochastic model for informa-

tion transmission in ant colonies for modeling changes of

strategies of traders in a financial market. While the orig-

inal set-up has ants exchanging information about the di-

rection of food sources, the adaptation to a financial set-

ting replaces them by foreign exchange dealers exchanging

information about the accurateness of chartist and funda-

mentalist predictions of exchange rates. Agents who meet

other traders adopt their strategy with a certain proba-

bility, but agents may also undergo autonomous changes

of opinion without interaction. Similar models with inter-

personal influences have been proposed by Lux [84] , [86] ,

[87] , Lux and Marchesi [90] , [91] , Chen et al. [26] , Aoki [6]

and Wagner [123] . 

Alfarano and Lux [1] have a stripped down version

of an extremely parsimonious herding model which still

appears to do the job of generating appropriate power

laws for returns and volatility. They again assume that two

different groups interact in the market: the well-known

fundamentalists and a second group denoted as noise

traders who are assumed to follow the current mood of

the market. While the first group simply trades on the

base of observed mispricing (i.e. differences between price

p and fundamental value p f ), noise traders are assumed

to be influenced by contagion dynamics. They can be

optimists (buyers) or pessimists (sellers) and switch be-

tween both sides of the market with simple probabilities

reflecting the influence of the majority opinion: 

prob(O → P ) = v 
N P 

N 

, prob(P → O ) = v 
N O 

N 

(14)

with N P ( N O ) the number of pessimistic (optimistic) agents,

υ a time-scaling parameter and N = N O + N P . Adding up

excess demand by both fundamentalists and noise traders,

the overall difference between demand and supply can be
written as: 6 

ED = T F (p f − p) + T c x, x = 

N O − N p 

N 

(15)

with T F , T C constants determining the trading volume of

fundamentalists and noise traders (aka chartists). Assum-

ing that market equilibrium is attained instantaneously,

one can solve for the equilibrium price: 

p = p f + 

T c 

T f 
x. (16)

As can be seen from (16), price changes are generated

by both (i) exogenous inflow of new information about

fundamentals ( p f ) and (ii) endogenous changes in demand

and supply brought about via the herding mechanism (i.e.

via changes of x ). While traditional finance models only al-

low for the first component (for x = 0 , we would end up

with Eq. (8) ) and, therefore, have to trace back all features

of returns to similar features of fundamentals, behavioral

finance models give a role to the intrinsic dynamics of fi-

nancial markets. While this structure is similar to the RE

bubble model ( Eq. 9 ), in contrast to rational bubbles the

second component in Eq. (16) does not have to obey a re-

striction for the rationality or consistency of expectations. 

As illustrated in a typical simulation in Fig. 3 , these few

ingredients detailed above are sufficient to generate rela-

tively realistic time series for returns whose distributional

and temporal characteristics are quite close to empirical

findings. What is the reason for this outcome? The herding

mechanism of Eq. (14) produces a bi-modal limiting distri-

bution for the fraction of noise traders in the two groups

of optimistic and pessimistic traders. Most of the time, one,

therefore encounters a majority of the noise traders on ei-

ther the supply or demand side of the market (which goes

along with undervaluation or overvaluation of the asset

price). However, the stochastic nature of the process also

leads to recurrent switches from one majority to another.

During these periods, large swings in average opinion lead

to an increase of volatility which will last for some time

until a lock-in occurs again to a stable optimistic or pes-

simistic majority. 

However, as outlined in Alfarano and Lux [1] , at least

the temporal scaling of volatility in this model does not

follow a true power-law. Because of the Markovian struc-

ture of the model, no ‘true’ long-term dependence can

exist, although standard tests are typically unable to dis-

tinguish between the apparent power-law behavior of

this model and true power-law behavior. Similar pre-

asymptotic, spurious scaling might occur in the very sim-

ilar models of Kirman [74] and Kirman and Teyssiere [76] .

Wagner [123] shows that a more detailed statistical analy-

sis reveals differences between volatility scaling in real-life

markets and the behavior of these simple models. For in-

stance, the volatility clusters within a time window are all

of the same size in these toy models and small size clus-

tering while observed in empirical time series is absent in

the simulated data. 
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Fig. 3. Typical simulations of the models by Gaunersdorfer and Hommes (2003) and Alfarano and Lux [1] . In the first model, the dynamics switches 

between a locally stable fixed point and a locally stable limit cycle. The high noise level conceals much of the underlying regularity, but leaves the 

impression of systematic switches between turbulent and tranquil episodes. In the second model, the driving force are stochastic transitions of agents 

between trading strategies which lead to switches between high and low volatility episodes. Both models can reproduce the phenomenological appearance 

of empirical series (see Fig. 1 ) and could also give the impression of power laws under standard statistical tests. However, they do not generate power laws 

in returns and volatility strictu sensu , but only apparent scaling behavior. 

7 For any combination of parameters, a threshold value can be com- 

puted for the fraction of chartists beyond which a loss of stability occurs. 
Certain refinements of this approach provide simu- 

lated time series which come closer to empirical obser- 

vations. Aoki [6] consider a stochastic process of interac- 

tion of chartists and fundamentalists with entry and exit 

of traders and also achieve to derive a stochastic difference 

equation for the ensuing returns dynamics with a tail in- 

dex μ > 1. Finally, Carvalho [22] demonstrates that one can 

even do without chartist traders or similar self-reinforcing 

feedback in price formation. Even when only fundamental- 

ists are present in the market, a multiplicative noise struc- 

ture can result. Letting fundamentalists react on the differ- 

ence between market returns and changes of fundamen- 

tals, and attributing to them identical market power but 

allowing for activation of each trader with a certain prob- 

ability only, suffices to generate a multiplicative stochastic 

process via the probability distribution of the number of 

active traders and, hence, produces power law behavior of 

returns. 

Another extension of the simple herding dynamics pre- 

sented above is the earlier model of Lux and Marchesi [90] , 

[91] , who add transitions between noise traders and fun- 

damentalists depending on the profitability of both strate- 

gies. Lux and Marchesi show that this relatively complex 

set-up could reproduce empirically realistic scaling laws 

for both returns and volatility in rather good numerical 

agreement with empirical data. Various sensitivity analyses 

also indicate that the numerical results are not very sensi- 

tive with respect to parameter variations. Furthermore, an 

analytical approximation via the Master equation frame- 

work adopted from statistical physics suggests a general 

robustness of the qualitative appearance of the dynamics. 

The characteristic switches between tranquil and volatile 

phases are triggered by recurring temporal deviations from 

an otherwise stable equilibrium in which the price is close 
to its fundamental value. The mechanism is this: in the 

neighborhood of the equilibrium, neither mispricing nor 

any detectable patterns in the price trajectories exist so 

that neither the chartist nor the fundamentalist strategy 

has an advantage. Agents, then, switch between these al- 

ternatives in a rather unsystematic manner which makes 

the population composition (in terms of strategies) fol- 

low a random walk. However, stability of the fundamen- 

tal equilibrium depends crucially on the ratio of chartists 

and fundamentalists. This is an insight from practically all 

models with chartist-fundamentalist interaction and it also 

features prominently in the Lux/Marchesi framework 7 The 

random walk in strategy space now makes the population 

sweep over this threshold every once in a while creating 

an onset of volatility. 

In fact, the deterministic approximation of the dy- 

namic system shows that one can interpret the number of 

chartists and fundamentalists as a critical parameter of a 

simpler system in which changes of this variable lead to 

movements back and forth through a Hopf bifurcation sce- 

nario. What happens fits the definition of so-called on-off

intermittency in physics which describes a dynamic system 

undergoing phases of temporal (intermittent) bursts of ac- 

tivity when the variation of one dynamical variable moves 

it through the bifurcation point of the dynamic process. 

Typical examples are chaotic attractors coupled to stochas- 

tic motion or coupled oscillators (Ott and Sommerer [103] , 

Venkatamarani et al. [122] ). Time series produced in this 

literature are often perplexingly similar to the phenomeno- 

logical appearance of volatility clustering in financial data 
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8 For example, choosing the preferred one from two or more brands of 

whiskey. 
and several fractal properties of the time series have been

analyzed in the above papers (albeit the ones of particu-

lar interest in finance are not discussed in this literature).

Although no theoretical results are available so far for the

model of Lux and Marchesi [90] , recent results on some

simpler versions (Alfarano et al. [2] ) suggest that under

some circumstances, interacting agent models of this type

can generate true power laws for returns and volatility. 

Lux and Marchesi [91] argue that irrespective of the

concrete details of the model, the indeterminateness of the

population composition in a market equilibrium might be

a relatively general phenomenon (because of the absence

of profitability of any trading strategy in such a steady

state situation) and together with dependence of stability

on the population composition, potential on–off intermit-

tency should exist in a broad class of behavioral finance

models. Some support for this argument is provided by Lux

and Schornstein [94] who consider a quite different multi-

agent design of a foreign exchange market with agents en-

dowed with artificial intelligence (genetic algorithm learn-

ing). They point out that a similar scenario like in Lux and

Marchesi prevails in this framework which also generates

behavior close to realistic power-laws in simulated data.

Similarly, Giardina and Bouchaud [57] allow more general

strategies than Lux/Marchesi, but also find a random walk

in strategy space to account for the emergence of realistic

dynamics. 

There is one important shortcoming of these models:

their outcome usually depends in a sensitive way on the

system size (i.e., the number of agents operating in the

market). With the increase of the size of the population,

the nice dynamic features and power-law statistics get lost

(Egenter et al. [40] ). The reason is that with an increasing

number of autonomous agents, a law of large numbers

comes into play and the stochastic dynamics effectively

becomes equivalent to draws from a Normal distribution.

However, Alfarano et al. [3] and Irle et al. [67] show that

size-dependency might be a consequence of the exact

topology of agents’ interaction. In particular, assuming a

given intensity of interaction of agents with their neigh-

bors (or with a general field effect generated by the

overall average of the population) implies that with varia-

tion of the number of agents (the system size), the relative

strength of this component will be declining. Scaling the

interaction component in a way to increase along with

system size will conserve the interesting dynamics and

make the qualitative outcome independent of the number

of agents. The increase of the velocity of transmission of

information with modern means of communication might

provide a rationale supporting an increase of the range

of interactions. Alfarano and Milakovi ́c [4] have proposed

an alternative solution to the system size dependence

in the herding-type models by introducing a particular

hierarchical structure among the market participants. 

Many variations of similar models have meanwhile

been published that generate realistic time series (e.g.,

Horst and Rothe [65] , Ghoulmie et al. [56] , Duarte Queirós

et al. [38] ). More recent literature has also turned to rig-

orous econometric estimation of the parameters of such

agent-based models (cf. Jang [68] , Chen and Lux [28] ,

Ghonghadze and Lux [55] ). 
4.4. Another mechanism: switching between predictors 

and attractors 

A closely related approach has emerged from an adap-

tation of the seminal random utility framework for em-

pirical analysis of discrete choice problems 8 (Manski and

McFadden [101] ) for formalizing - again - the interplay of

the notorious chartists and fundamentalists in speculative

markets. This approach dates back to Brock and Hommes

[16,17] but its potential to generate realistic time series has

only been revealed in subsequent research. Models of this

type are very close in terms of economic intuition to those

reviewed in the previous section, but have a somewhat dif-

ferent flavor from a dynamic systems perspective. 

Let us illustrate the basic ingredients of these mod-

els via an example along the lines of Gaunersdorfer and

Hommes [53] , [54] . Our starting point is the distinction

between different groups of traders (mostly two) whose

excess demand for a risky asset depends on their group-

specific expectation of future price increases and divi-

dends: 

ED i,t = 

E i,t [ p t+1 + d t+1 − (1 + r) p t ] 

μσ 2 
(17)

with ED i, t : demand of group i at time t, p t : the price, d t :

the dividend, r : the risk-free rate available for a riskless as-

set (i.e. government bonds), μ: a parameter of risk aver-

sion, and σ 2 the variance of the expectation term in the

numerator. Eq. (17) , therefore, formalizes demand depend-

ing on the risk-adjusted excess returns (the sum of divi-

dends and capital gains) of a risky over a riskless invest-

ment. Economists know that this kind of demand function

can be derived from simple mean-variance utility func-

tions as well as from negative exponential utility func-

tions under a few additional conditions. With some effort,

the more phenomenological excess demand function of the

previous chapter could also be cast into such a framework.

If there is no additional inflow of assets (no new issues for

the time being), market equilibrium simply requires that: 
∑ 

i 

n i,t ED i,t = 0 , (18)

with n i, t the fraction of market participants subscribing to

strategy i at time t . Allowing only for agents who compute

in a perfectly rational way the expectation of future price

and dividend according to Eq. (7) , we would once more

fall back on the fundamental price of Eq. (8) . However, in-

troducing ‘boundedly rational’ speculative strategies devi-

ations from this fundamental valuation become possible.

As an example, Gaunersdorfer and Hommes [54] analyze

a model with two groups, i = 1 , 2 , using different expecta-

tion formation rules: 

E 1 ,t [ p t+1 ] = p f + v (p t−1 − p f ) , (19)

E 2 ,t [ p t+1 ] = p t−1 + γ (p t−1 − p t−2 ) , 

together with stationary expectations of dividends

E 1 ,t [ d t+1 ] = E 2 ,t [ d t+1 ] = d̄ . Clearly, group 1 can be iden-

tified as a fundamentalist crowd while group 2 has a
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chartist prediction technique. The discrete choice frame- 

work comes into play when modeling the choice of one 

of these two predictors by the agents in the market. 

Like in Lux/Marchesi, choice of strategies is governed by 

objective economic factors. Gaunersdorfer and Hommes 

use accumulated profits: 

πi,t = R t · ED i,t−1 + ρπi,t−1 (20) 

where R t is the actual return achieved with investment in 

the period before and ρ is a parameter for the memory 

of past profitability. Other papers use risk-adjusted profits 

or utility measures instead of monetary profits as fitness 

criteria. However, it does not appear from the available lit- 

erature that these choices would lead to grossly different 

outcomes. The last step is predictor choice based on the 

fitness criterion: 

n i,t+1 = 

exp (βπi,t ) ∑ 

i 

exp (βπi,t ) 
(21) 

i.e. through the standard discrete choice formalization. β is 

called the intensity of choice with the extreme cases β = 0 

( β → ∞ ) leading to constant fractions equal to 0.5 or to- 

tal polarization (one n i,t = 1 , all others equal to zero if the 

slightest differences in fitness exist). Often, as in Gauners- 

dorfer and Hommes [54] , additional factors enter the de- 

termination of fractions n i, t . 

Formally, the combined dynamics of predictor choice 

and price development make up a discrete deterministic 

system (in the above example it is a difference equation 

system of order three). Typically one would be able to 

derive analytical results concerning the number of possi- 

ble equilibria, local stability conditions and bifurcations of 

the system dynamics. Because of the highly non-linear na- 

ture of these systems, many kinds of complex dynamics 

can arise: limit cycles, chaotic dynamics, homoclinic or- 

bits as well as co-existence of different types of attractors 

may all happen for different sets of parameters. The later 

scenario is of particular interest and can be characterized 

as another type of ‘intermittend dynamic behavior’: when 

two or more attractors exist for the deterministic system, 

adding noise (random shocks) superimposed on the deter- 

ministic dynamics may trigger switches between different 

basins of attraction of different limiting sets. For example, 

with coexistence of a fixed point-attractor and a limit cy- 

cle, the stochastic movements between both types of dy- 

namics also goes along with switches between turbulent 

and tranquil market phases. An illustration is provided in 

Fig. 3 which exhibits a simulation of the example given 

by Gaunersdorfer and Hommes [54] . Quite intuitively plau- 

sible, the market exhibits small fluctuations as long as it 

hovers within the basin of attraction of the locally stable 

fixed point (where the price is equal to the fundamental 

value on average) and the majority of traders chooses a 

fundamentalist strategy, but onset of more violent fluctua- 

tions occurs once it traverses to the basin of the limit cycle 

(with its cyclic dynamics being governed by a prevailing 

chartist attitude). As can be seen from the resulting dy- 

namics of returns, at least for certain choices of parameter 

values, the deterministic origin of the process is almost en- 

tirely concealed by its stochastic components. As Gauners- 

dorfer and Hommes show, a number of statistics give quite 
satisfactory agreement between their simulated data and 

empirical records. Although they do not estimate power 

law indices, it seems natural from the simulated time se- 

ries that their process should be able to mimic the hyper- 

bolic decay of the returns distribution and the long-term 

dependence of volatility. 

Further examples are given by Gaunersdorfer [54] who 

has a slightly different model set-up which could even lead 

to coexisting fixed points and chaotic attractors. Other re- 

cent contributions along very similar lines are Chiarella 

and He [30] , [31] , Fernandez-Rodriguez et al. [46] , West- 

erhoff [127] , De Grauwe and Grimaldi [35] , Chang [25] , 

Ke and Shi [71] , and He and Li [61] . A recent survey

of this literature can be found in Hommes (2009). De 

Grauwe and Grimaldi [35] have an interesting variation 

of the attractors-switching avenue to intermittent fluctu- 

ations: introducing transaction costs for the acquisition of 

fundamental information they obtain a band of inactivity 

of fundamentalists around the fundamental equilibrium. 

The price process, then, follows different patterns inside 

and outside of this transaction cost band which appar- 

ently also generates intermittent volatility clustering. He 

and Li [61] provide an analysis of complex dynamics of a 

continuous-time version of a market with heterogeneous 

agents switching between strategies. Both De Grauwe and 

Grimaldi and Westerhoff estimate the tail indices for large 

returns and obtain numbers in agreement with the styl- 

ized facts, i.e. numbers in the vicinity of the cubic power 

law. 

One of the distinguishing features of the above contri- 

butions is the assumption of an infinite population of spec- 

ulators which allows to study the resulting dynamics via 

systems of deterministic difference equations derived for 

the infinite population limit. While this is an approach 

very much in line with traditional economic theorizing, it 

gives these models a somewhat different flavor compared 

to the finite-size multi-agent models reviewed before. In 

particular, the interplay of noise and deterministic factors 

is quite different in both approaches: while noise appears 

on the level of each individual agent in, for instance, per- 

colation models or the Lux/Marchesi model through the 

transition probabilities (eg. 14), the inherent fluctuations 

of the discrete choice approach are averaged out by the 

assumption of an infinite population in Gaunersdorfer and 

Hommes [54] . Thence, despite the randomness at the level 

of the agents and the use of random choice probabilities, 

Eq. (21) , for instance, leads to a deterministic dynamics 

under the assumption of an infinite population. The noise 

component responsible for the switches between attractors 

has, therefore, to be superimposed on the market dynam- 

ics and enters on the level of the macroscopic system by, for 

example adding a stochastic term in the excess demand 

equation (18) . However, this implies that the noise level 

has to be relatively large to obtain the results exhibited in 

Fig. 3 . In fact, inspection of the simulations of this exam- 

ple shows that the added stochastic component in market 

excess demand is of almost the same size like fundamen- 

talists’ average excess demand (with chartists’ average ex- 

cess demand being equal to the sum of the two other com- 

ponents). In simulations with realistic time series proper- 

ties, the ‘signal-to-noise ratio’ in this model is, therefore, 



T. Lux, S. Alfarano / Chaos, Solitons and Fractals 88 (2016) 3–18 15 

Table 1 

Sources of power laws in finance. 

Class of models Source of power law Problems 

Exogenous explanations Traditional finance Fundamentals Fundamentals are unobservable 

Gabaix et al. [51] Zipf’s law for investment capital Neglect of behavioral roots, empirical 

validity dubious 

Endogenous explanations RE bubbles Multiplicative dynamics Unrealistic exponents 

Percolation models, e.g. Cont and 

Bouchaud [14] 

Cluster formation Power laws not robust 

Multi-agent models, e.g. Lux and 

Marchesi [90] 

Intermittent dynamics Sensitivity with respect to number of 

agents 

Discrete choice models, e.g. Gaunersdorfer 

and Hommes [54] 

Switching between attractors Sensitivity with respect to noise amplitude 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

practically equal to one. With hindsight, this may be a

necessary requirement for obtaining ‘realistic’ time series

as a high noise factor will be required to mask the in-

herent deterministic forces prevailing around both the fix

point equilibrium and the limit cycle regime. Since, on the

other hand, the noise level should not be too high so to

not totally dominate the deterministic roots of the dynam-

ics, the variance of the added stochastic term is probably

a central ingredient of the model. In an empirical applica-

tion of a closely related model, Amilon [5] reported un-

satisfactory results as many parameters of the structural

dynamics turned out insignificant, and the residuals were

not very different with or without the heterogeneous agent

dynamics. More supportive results are reported by He and

Li [62] in a model with heterogeneous expectations, but

without switching between predictions/strategies. Franke

and Westerhoff [4 8] , [4 9] , estimate various models of the

heterogeneous agent classes in which it turns out that an

element of herd behavior plays an important role in ob-

taining a good match of the ‘stylized facts’. 

5. Conclusions 

In contrast to one recently articulated opinion (Durlauf

[39] ) power laws in finance have never been regarded as

curiosities. On the contrary, both the scaling of the tails of

the distribution of returns and the long-range dependence

of volatility are all-important to practitioners and have

motivated a vast statistical and econometric literature.

Much of the development of the toolbox in empirical

finance is due to these apparently universal properties of

financial markets (with Engle’s family of ARCH models the

most prominent example). It is, however, also true that

economic theory has been altogether silent on behavioral

roots of these regularities until very recently. Besides

having been regarded as merely statistical findings outside

the realm of economic theory, typically they have mostly

been described in a more phenomenological way via the

shape of histograms or the apparent clustering of tranquil

and turbulent episodes. While a power-law perspective

has already appeared in Mandelbrot’s seminal contribution

(1963), whether the ‘stylized facts‘ can really be described

rigorously by power laws has remained unclear until

the nineties. By now, availability of high-frequency data

and new analytical tools have led to a consensus of a

relatively uniform exponent around three which seems to
hold across markets, countries and time periods. Similarly

homogeneous evidence is emerging for the long-range

dependence of both volatility and volume. 

Theoretical work trying to explain these features has

followed diverse avenues. As depicted in Table 1 we can,

in principle, distinguish between exogenous and endoge-

nous approaches for explaining financial power-laws. The

first class has only been dealt with in passing in the main

text: its major member is the whole body of traditional

efficient market models in finance which would have to

attribute all time series properties of financial returns to

the structure of news about fundamental factors. In this

view, scaling in returns and volatility would only mirror

scaling in increments and fluctuations of fundamental in-

formation. Needless to say, many proponents of behavioral

models take the unsatisfactory nature of this explanation

as their starting point. An interesting alternative exoge-

nous explanation can be found in the recent papers by

Gabaix et al. [51] , [50] who derive the cubic law for re-

turns from Zipf’s law for the capital of large investors plus

some other ingredients. However, the empirical basis of

this theory has already been questioned by careful anal-

ysis of some of its ingredients. Even if it would go through

it would leave one with an unexplained Zipf’s law for the

wealth of investors from which the other power laws are

derived. 

Most papers on the topic have, however, pursued a dif-

ferent approach focusing on the intrinsic dynamics of spec-

ulative interaction in financial markets. The first example

in this second class is the RE bubble theory which, in

fact, emerges from relaxation of a minor technical condi-

tion of traditional present value models. Although it has

the fascinating property of defining a whole class of data-

generating processes with generic power laws, numerically

these laws are disappointingly far off from the empirical

ones. The conclusion to be drawn from this result is that

we can exclude this whole class of fully rational models of

speculative activity. This leaves one essentially with either

the choice of subscribing to the Efficient Market Hypothe-

sis of price formation being exclusively governed by funda-

mentals, or resorting to one or the other brand of models

of speculative activity with bounded rationality. Within the

recent econophysics literature, percolation models adopted

from statistical physics have attracted the interest of a siz-

able number of researchers. Their disadvantage is the lack

of robustness: the model parameters have to be fine-tuned
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to arrive at the required power-laws. As another drawback, 

most parameters in these models are not easy to interpret, 

so that an economic assessment of the explanatory power 

of the resulting dynamics at the critical percolation thresh- 

old is difficult. 

In the behavioral finance literature, several types of 

models with interaction of different trader groups have 

been proposed. Typically, interesting time series are ob- 

tained from some kind of ‘intermittent’ dynamics. A gen- 

eral conclusion from this body of literature is that some 

kind of self-amplification of fluctuations via herd behavior 

or technical trading is necessary (and often sufficient) to 

generate time series which are phenomenologically close 

to empirical records. One of the more important problems 

of these models is the relationship between system size, 

deterministic forces and stochastic elements. On the one 

hand, typical simulation models often suffer from a critical 

dependence of their ‘nice’ results on the number of agents 

operating in the market. But also see Alfarano et al. [3] 

and Irle et al. [67] for avenues to overcome this problem. 

Models starting with an infinite population, on the other 

hand, have to adjust the noise level in a way to counter- 

balance the deterministic core of their market dynamics. 

In this way, a sizable part of the fluctuation of returns has 

to be assigned to purely stochastic (fundamental) factors, 

and the explanatory power of the intrinsic dynamics of the 

trading process almost by construction would turn out to 

be limited. 

The introduction of concepts and models from statis- 

tical physics has also evoked interesting methodological 

discussions: while physicists forcefully argue in favor of 

building simple models of interacting economic agents 

and neglecting as far as possible details which are not in 

the center of interest (cf. Stauffer [113] ), some economists 

have criticized this approach for producing models that 

are not economically insightful (Durlauf [39] ). Of course, 

parsimony is also a concern in economic modeling. How- 

ever, physicists and economists would often differ in their 

assessment of the essential model ingredients a truly par- 

simonious model should contain: while physicists would 

favor interactions, economists would traditionally prefer 

to emphasize the microeconomic foundations of agents’ 

behavior. However, having to begin with a full-fletched 

microeconomic dynamic optimization approach makes 

modeling of interactions superimposed on the traditional 

microstructure an even more demanding task. It could 

also restrict the outcome by adhering to particular forms 

of utility functions, ways of information acquisition and 

information processing, trading strategies etc. The relative 

success of several simple models in explaining a good 

degree of the hitherto unexplained empirical character- 

istics of financial data casts doubts on the paradigm of 

micro-foundations in the sense of ‘representative’ individ- 

ual optimization in economic models (which is a classical 

example of a reductionist approach). Although analysis 

of individual optimization is in no way unimportant, 

exclusively focusing on this aspect of economic life comes 

with the danger of neglecting the equally important con- 

sequences of both market-mediated and social interactions 

of market participants. 
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