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• We proved that basketball scoring does not follow a unique distribution.
• Poisson model fails in some game times, where Power Laws show up.
• The result of the competed basketball games depends on the last minute of the game.
• Events likelihood with dt = 1 s is the highest in last minute; free throws mainly.
• Teams play in order to reach last minute. Basketball behaves as Red Queen Hypothesis.
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a b s t r a c t

Team sports are frequently studied by researchers. There is presumption that scoring
in basketball is a random process and that can be described using the Poisson Model.
Basketball is a collaboration-opposition sport, where the non-linear local interactions
among players are reflected in the evolution of the score that ultimately determines the
winner. In theNBA, the outcomes of close games are often decided in the lastminute,where
fouls play amain role.We examined 6130 NBA games in order to analyze the time intervals
between baskets and scoring dynamics. Most numbers of baskets (n) over a time interval
(∆T ) follow a Poisson distribution, but some (e.g., ∆T = 10 s, n > 3) behave as a Power
Law. The Poisson distribution includes most baskets in any game, in most game situations,
but in close games in the last minute, the numbers of events are distributed following a
Power Law. The number of events can be adjusted by a mixture of two distributions. In
close games, both teams try to maintain their advantage solely in order to reach the last
minute: a completely different game. For this reason, we propose to use the Poissonmodel
as a reference. The complex dynamics will emerge from the limits of this model.
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1. Introduction

There have been many attempts to understand sports phenomena through the modern theory of Non-linear Complex
Systems; systemswhich involve large numbers of interacting agents [1–6]; sport, in turn, provides a rich laboratory inwhich
to study competitive behavior in a well-defined way [7].

In the study of team sports, most researchers have focused on classical statistics, based on the Poisson model, negative
binomial, extreme events, or random walk processes [8,9,5,7,10,11] with good results in basketball and soccer. Statistical
models more related to complexity such as Power Laws, q-statistics, etc. have also been successfully used [12–14], as well
as competition dynamics [2,12] and game theory [13], particularly in basketball. This helps us to understand complexity,
and shed light on the above mentioned concepts, as well as improve our understanding of these sports.

Unlike other sports such as soccer, where scoring can be considered a rare event and a 0–0 result is a common result; the
score in basketball is a parameter which provides continuous, almost instantaneous, information that allows an evaluation
of the degree of self-organization of a team, or actions taken in each case. In addition, there are differences in the number of
points obtained from a basket: 1 (fouls, free throws), 2, or 3 points. The kind of point scored has not the same importance
in different moments of the game [10].

A priori, scoring in basketball can be considered a random process, meaning that it is memoryless [7,11,12]. Therefore,
the processmust follow a Poisson distribution, inwhich events are random and independent. Violation of this independence
leads to Pareto or Power Law distributions [14,15].

A basketball game is a competitive event. During the game, the degree of competitiveness can fluctuate; hence the
intensity of competition may be much higher at certain times of the game time than others. This is manifested in the fight
for the lead during the game time [11]. In the final moments of most close games, one team has a small advantage over the
other and tries tomaintain it over the time remaining. The teamwith the lower score will try to wipe out this difference. The
point is that it is in the final moments of the game that uncertainty (the officials, fatigue, injury, wrong decisions, etc.) can
be the key. In these moments when effective management and decision making are most necessary, the information among
all elements of the system and the interrelations between them should flowmore easily. The complexity of the game hence,
may increase, which in some way is reflected in the numbers and types of points that are achieved. The struggle to regain
the relative advantage in a complex environment, which seems to have some resemblance to a Red Queen’s race, has many
solutions: try to keep possession, to force the opposition to shoot, take quick fouls, etc. Thus we can expect an avalanche
phenomenon in the number of points achieved, affecting the tail of the distribution and a substantial increase in probability
of Power Law distributed phenomena.

In this study, our goal is to use the framework of Poisson random processes and their limits in order to find out the extent
to which the Poisson process fails in certain situations and in some extreme situations. Moreover, we try to find complex
patterns through scaling analysis or Power Laws; or even regularities to improve the understanding of this sport within
the completely random framework of the Poisson model. Hence, in this paper the idea is to use two basic frameworks of
reference in order to analyze point scoring in basketball: Poisson (or Negative Binomial) and Power Law distributions. Our
interest is not to find and discuss statistical models that best fit each situation, but rather to approach the problem in amore
qualitative way. Therefore, in order not to obscure the analysis and discussion of the results, which are addressed towards
both complexity and sport professionals, we consider it preferable not to use more sophisticated statistical models.

2. Methods

In this paper we focus on the consecutive points scored by any of either team in each game. As a sample for this analysis
we used five NBA regular seasons (i.e., no play-offs), a total of 6130 games that we considered adequate for analysis over
short time intervals. We excluded overtimes in order to analyze a homogeneous sample which contains all kinds of games
with several different competitive scenarios. Overtimes and play-offs correspond to games with subtly different dynamics
that would bias our analysis.

In the following we refer any kind of point scored (1, 2, or 3) by either team as an event or basket. 1T represents the
predetermined time interval with which we analyze the game; meaning the number of events that took place in that time
interval. On the other hand, dt represents the elapsed time between events and indeed is variable.

2.1. Poisson distribution

A game can be considered as an arrival process; over a time interval (1T ) a number n of field goals (baskets) are scored.
The Poisson distribution presents the well-known expression:

p(x; λ) =
e−λλx

x!
where p(x, λ) is the probability of observing x events in a specific time period 1T , depending on a parameter λ, which has
a precise physical meaning: the mean number of events per time interval, λ = µ ∗ 1T with µ being the number of events
per second. A Poisson process is characterized by two features:
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1. Index of Dispersion (ratio of the variance and themean) ID = 1 and the probability of no occurrence is p(x = 0, λ) = e−λ,
which determines the number of zeros.

When the Index of Dispersion (ID) is lower than 1, the process is considered to be under-dispersed, which means that
its probability distribution is more clustered around the mean making it more predictable. When the variance is greater
than the mean, ID > 1, the distribution is considered over-dispersed, indicating larger data dispersion. This case points
out the possible existence of clusters in data. We highlight two causes that may be responsible for ID > 1; the problem
of a long tail where the distribution tail is higher than that predicted by the Poisson model, and can be described by a
negative binomial distribution that, for non-integer values of the parameter r , is calculated using the gamma function Γ .

p(x; r, p) =
Γ (r + x)

Γ (r)Γ (x + 1)
pr(1 − p)x.

The other cause is when there is an excess of zeros, p(x = 0, λ) > e−λ or both.
2. The inter-event time (dt) or time between arrivals, follows an exponential distribution p(dt) = µe−µdt , which depends

on a single parameter µ and is easily detectable in a semi-log plot. This indicates that a Poisson process has no memory;
the probability of an event is unchanged by the occurrence of a prior event.

2.2. Scaling analysis

The Scaling Analysis, Power Law distributions (PL) play important roles in describing nonlinear complex systems, and
are often used to describe many natural and social phenomena. Scaling or Power Law relationships arise commonly as
probability or frequency-size distributions, and are characterized by the form f (x) = Cx−α where C is a constant [16].
This function is linear when it is plotted on a log–log scale, and the slope of the resultant straight line gives an estimation of
the scale exponent α. Scale-invariance is another characteristic associated with Power Law distributions, [17,18], thus such
phenomena have the same statistical properties at any scale and are not associated with a particular one. The presence of
Power Laws has also been suggested to be the signature of systems that show Self-Organized Criticality [19], characterized
by avalanche phenomena.

Power Laws are very important because they can reveal underlying regularities in the dynamics of a system. However,
the presence of a Power Law by itself is insufficient to specify the mechanism that generates it. One important limitation of
this tool is the behavior at the tail of the Power Law distributionwhere the greatest fluctuations are found [20]. Furthermore,
in recent years, improved statistical tests have provided strong evidence for scaling laws over substantial (although limited)
ranges of scales [21,22]. Despite these difficulties, there are some advantages in the application of Power Laws for the
purposes of diagnoses, characterizations, and even predictions. This allows the comparison of analogous phenomena and
the characterization of regions over similar environments. For these purposes we do not need to have absolute certainty
that an empirical data set follows a Power Law.

2.3. Close games and non-close games

In a recent paper [10], we noted that final point difference distributions seem to follow several Power Laws. The
appearance of these Power Laws helps us to classify the entire sample in close games (CG) and non-close games (NCG).

Games endingwith 12point differences or less followapproximately uniformdistributions. This is a notable fact: a typical
final score does not exist, with roughly the same probabilities between 1 and 11 points. We define these kinds of games as
close games (CG).

For a final difference higher than 12 points there is superiority of one team over another and these games are more
predictable than those above. As mentioned, we define these types of game as non-close games (NCG).

In the sample analyzed a total of 3468 games (63%) concludedwith a difference between 1 and 11 points and 2285 games
(37%) had a difference higher than 12 points. 380 games were tied.

3. A mixture of two distributions

In order to model the number of events in the entire sample in a given time period 1T , we assume that they follow a
Poisson process, and therefore we are able to calculate the mean and variance of the number of events obtained over time
unit (1T ) for all the games. The number of seasons analyzed gives usmore than 6000 games, therefore a sample large enough
to measure small time intervals 1T . The ID changes as we can observe for different 1T (Table 1), indicating that there are
several ways to observe every game. Now we analyze in depth the most clear Poissonian case 1T = 10 s, ID = 0.98.

Fig. 1 shows the semilogplot of the histogram of baskets scored every 10 s for both teams in the entire sample (◦) and for
the close games (+).

The frequency values in the histogram follow, in general, a Poisson distribution λ = 0.386± 0.001 (dashed line (•)). The
first five values seem to fit the Poisson distribution well. For more than five points the Poisson distribution does not fit the
data well, nevertheless from two points scored the data fit better by a Power Law (solid line) with α = −6.54± 0.62; R2

=

0.99, p value < 0.005. The α value is based on less than a data decade. It shows a fast decay of the number of events that can



J.M. Martín-González et al. / Physica A 464 (2016) 182–190 185

Table 1
1T and mean values of ID.

1T (s) ID

2 1.23
6 1.10

10 0.98
30 0.83
60 0.84

Fig. 1. Semilogplot of the histogram of all events (◦) and the close games events (+) every 10 s. The dash line (•) represents the theoretical Poisson
distribution for these values and the solid line shows the Power Law fit. The scaling analysis reveals that beyond a specific value the data are better fitted
by a Power Law (solid line).

be obtained in this time interval. Even so, for longer intervals it remains analogous behavior. The Power Law only reveals a
scale free behavior beyond a certain score value. The data appear to be distributed as a mixture of two distributions which
overlap each other between events 2 and 4.

In a deeper analysis, we can observe that from a total of 1 765728 events (including zeros), in 99.91% of cases, amaximum
of 4 baskets was scored every 10 s; this is the areawhere the distributionmatches with the Poisson distribution. Beyond this
point the distribution gives the impression that it follows a scale-free behavior. At first sight, scoring more than 4 baskets
in 10 s can be considered as an irrelevant event (less than 0.09% of cases). However, when we study these data in detail, we
find that there are 1586 cases of 3 baskets or higher every ten seconds, where in 969 of these cases (61%) these events take
place in the last minute. In addition 283 (17%) are distributed within last minutes of each quarter. Only on 333 occasions
(21%) do these events come to pass in other instants of the game.

Furthermore, of the total of 1381 games with at least one case with more than 3 baskets, 1128 (82%) were in CG. As we
can observe in the box of Fig. 1, in the tail of the distribution of the contested games (◦) fits with the whole values (·).

We can therefore deduce that the number of baskets scored in a given time interval can be described by amixture of two
distributions. A few events in the last minute of the games seem to be the determining factor in the final results. In CG, the
last minute is crucial: teams must maintain a high level of performance to reach the final minute where nothing is decided;
a completely different game takes place in these last moments. A minute can be much longer than 60 s.

3.1. Scoring time evolution

To better understand the limitations of the Poisson Model, we assume that every minute (1T = 60 s, ID =

0.84 according our sample) in a basketball game evolves following a Poisson process. Consequently, we could calculate the
probability of the number of events in the first minute for all of the games, then in the second minute, and the third and so
on. Every minute is considered an independent Poisson process with defined mean and variance values, and consequently
ID values. Fig. 2 displays the Index of Dispersion for each minute, with values lower than 1 in most cases, and hence more
predictable than the pure Poisson process. The ID increases with the evolution of the game, indicating more randomness.
In particular, over the last minutes of the three first quarters the ID converges towards 1; as well minute 47, which has the
value 1. The upper panels illustrate the frequency of the number of events in a semi-log plot (dotted solid line) for two cases:
minute 20 and minute 47. We compared both to the Poisson distribution (dashed line (◦)). In the first case the variance is
lower than that predicted by Poisson. Minute 47 behaves similarly to the final minutes in previous quarters and matches
the Poisson distribution, but for some tail values with low weights in the total distribution. Minute 47 represents the most
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Fig. 2. Index of Dispersion of the events per minute. We observe that the trend of the values is to rise over time. Only at the end of each quarter there
is a significant increase towards 1. At minute 47 the value 1 is reached (pure Poisson). Minute 48 is completely out of the range of the rest of the game,
reaching values higher than 1. The behavior for this minute is very complex. The two upper panels show baskets frequency semi-log plots (dotted solid
line) and Poisson distribution (dash line (◦)) for minute 20 (left) and minute 47 (right).

Fig. 3. Histogram of events in the last minute of the game. The solid line represents a Negative Binomial Distribution fit. Note that the values are better
fitted at the tail of the distribution. For further analysis, we show a log–log plot in the upper panel, which displays two Power Laws (straight lines). The
dashed line in the upper panel represents the negative binomial fit.

unpredictable moment of the game and seems to be a transition to minute 48, which is totally different from the rest of the
game and will be examined in depth below.

This seems to be an indicator of the risk assumed by all teams. Teams tend to risk more during final moments of each
quarter, and defensive intensity increases (more fouls) which indicates greater likelihood of failures, more zeros than at
previous times or greater numbers of baskets (longer tails), meaning more randomness that explain its proximity to the
Poisson distribution. In the cases with less risk, the game seems more predictable and the number of failures is lower;
which would justify the least number of zeros and the shorter tail.

3.2. The last minute

We bear in mind that there is a time limit of 60 s, from 8 events the PL is truncated. Even it is possible reaching 20 events
or more in the last minute, which points out the complexity of the game and importance of the last minute. Although we
strictly cannot mention a long-tail phenomenon, we can do mention that there is a scale-free process.

In the lastminute the variance is significantly higher than themean, indicating an over-dispersionwhich can bemodeled
by a Negative Binomial Distribution. Fig. 3 shows a histogram of baskets and the Negative Binomial fit (parameters r =
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Table 2
Events in the last minute.

Range of events Points scored (%)
1 pts. 2 pts. 3 pts.

0–3 events 35.6 49.3 15.1
4–9 events 63.6 27.3 9.1
More than 10 events 73.1 18.8 8.1
Minute 48 total events 58.3 31.4 10.3
Total events in game time 34.0 55.0 11.0

3.86 ± 0.27; p = 0.48 ± 0.02) which visually give us the impression of an acceptable model fit. The source of this behavior
could be the clustering of events focused within some specific games where the numbers of basket increase. We carried out
a scaling analysis on a log–log plot (upper panel) which reveals that the data can be fitted by two PLs as well. Noting that
we keep in mind that there is a time limit of 60 s, from 8 events the resulting PL is truncated. Moreover, it its possible to find
cases where 20 baskets or more are scored in the last minute, which points out the complexity of the game and importance
of the last minute. Although we cannot strictly mention a long-tail phenomenon, we can mention that there is a scale-free
process.

In order to better understand the complexity, we can distinguish the events according to the kind of point scored. In
Table 2,we break down the events corresponding to the kind of point (1, 2, and 3) because until nowwehave only considered
events and not the kind of point.

In order to better understand the game during the last minute, we can distinguish the events according to the kind of
point scored because until now we have only considered events and not the kind of point.

In Table 2, we show the number of events achieved by both teams in the last minute of the game, in comparison with the
game total (last row). The first column represents the number of events in ranges 0–3; 4–9; more than 10 events; the final
minute and the game total. Columns 2 through 4 display the relative frequencies of points (1, 2 and 3 points) in percentage.

Note that for between zero and three events (row 1 in Table 2), the distributions for one, two or three point shots are
similar to any other stage of the game (last row), except that the percentage of triples is a little bit higher. Between 4 and
9 (row 2), which roughly corresponds with the first straight line of the upper plot of Fig. 3, the number of free throws is
higher. As a final point, in games withmore than ten baskets in the last minute, (second straight line in Fig. 3), 73%were free
throws. These two cases (rows 2 and 3) are cases of great complexity, dominated by fouls and remaining time as a stress
factor. This increase in complexity (fouls committed) could be responsible for the PL behavior. For more than 9 baskets
it is likely that the last minute has almost been consumed and it is more difficult to increase the number of points. This
indicates truncation of the PL, as shown in Fig. 2. The Power Law indicates a longer Poisson tail, a scale-free situation, more
competitiveness, intentionality, strategy and hence more rich behavior.

As Andriani and McKelvey [14,15] suggest, within competitive systems Power Law type distributions can show up
under two conditions: when competitive intensity increases and when the cost of connections or information transmission
decreases, which in our case would be given by better self-organization or understanding among team members over the
last minute of CG.

4. The distribution of time intervals between events revisited

The second feature of the Poisson model pointed out above refers to the time interval distribution (dt) between events.
Some papers [7,10,12] show the distribution of time intervals between events (dt). In Fig. 3, we show the same distribution
on a semi-log-plot, but with an important difference. In the upper panel we highlight the details for dt < 30 s. Note that
beyond 26 s the data follow an exponential distribution (solid line in the figure and µ value) with µ = 0.048. We note [10]
that after 100 s, the probability of remaining without scoring is greater than that provided by the exponential distribution,
this seems to be a memory effect that the exponential distribution does not have (memorylessness). In other words, if the
game becomes complicated and neither team scores after a critical time, the probability of not scoring in the next few
seconds seems to increase, which occurs in the first minutes of each quarter and especially in the fourth quarter.

Now, we focus on the area with event time differences (dt) lower than 30 s; subplot in Fig. 4. The distribution presents
three well differentiated areas marked with circles. The maximum of the distribution is located around dt = 18 s, which
seems to be related to the possession time in basketball [7,10]. The frequency values which are placed around dt = 6 s show
a change in the growth of the distribution. Also, it is especially noteworthy that 1 s differences between events (first circle)
have a significant presence in the distribution. It does not seem logical that in a sport where there is certain continuity in
the game, baskets with 1 s difference between them, are so numerous. However, this occurs mainly over the last minute
and corresponds mostly to fouls (free throws), giving the last minute a different reality, as discussed previously.

In Fig. 5 we show a histogram of events for each dt value (dt < 50 s). The dotted line (·) corresponds uniquely to the
relative frequencies of minute 48. The solid line represents the frequencies of the final minute of each quarter and minute
47 (minutes 12, 24, 36 and 47). The dashed line displays the rest of the minutes. In the upper panel the relative values of
frequencies for the CG (dotted line) and NCG (solid line) are shown.
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Fig. 4. Semi-log plot of time interval frequency (dt). Apparently, there are three different behaviors. The data follow a distributionwith amaximum (peak)
around 20 s. Beyond 30 s there is an exponential distribution. The upper panel shows a detail for the first 30 s.

Fig. 5. Relative frequency of events (y-axis) with a time difference between them of 1 s, 2 s, 3 s, . . . , up 50 s (x-axis). The dotted line (.) represents events in
the last minute of the game, where it is clear that most baskets with one second difference are given in this period. The other values correspond to the last
minute of the remaining quarters andminute 47 (solid line) and to the rest of the minutes (dashed line). We also highlight the area from 16 to 23 s (◦), this
array has almost the same probability among its members. The relative values of frequencies for the CG (dotted line) and NCG (solid line) are displayed in
the subplot.

The lastminute of the game (dotted line) is completely different from the rest of the lastminutes of the previous quarters.
The highest frequency value is for points with dt = 1 s with a significant difference compared to the other quarters. The
frequency falls by down to 3 s, but increases again to 5 s and is still high compared to the rest of sample, which coincides
with the discontinuity shown in the panel of Fig. 3. There is also a nearly horizontal region at 16 < dt < 22 that corresponds
to the time differences associated with the 24 s of possession. This could be caused by the influence of the 24 s rule. Beyond
this area, the frequency declines almost exponentially until the end.

Regarding the other two curves, their profiles are similar to the general one shown in Fig. 3. It is remarkable that in the
case of the final minute of each quarter and in the range from 14 to 23 s, the distribution is fairly uniform, indicating a more
intensive use of the 24 s rule, obeying game strategies that determine the temporal profile that we will see later.

The upper panel of Fig. 5 shows the relative frequencies of the time intervals in the last minute for the CGs (dotted line)
and NCGs (solid line). Clearly the CGs are different from NCGs, which present a similar profile to the rest (see main figure).
The CG curve behaves in a similar manner to the last minute curve, decreasing exponentially as a function of dt , but not
homogeneously. In the interval 16 < dt < 22, remarkably the distribution is almost uniform between these two points,
in response to the kind of game performed in these situations; a shooting retention type in order to consume more time,
presumably.
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Table 3
Percentage of each event and points scored for different dt .

Minute of the game dt = 1 dt = 2 dt = 3 dt = 4 dt = 5 dt = 6 dt = 7 dt = 8

11–12 1.52 4.38 5.45 6.28 5.38 5.13 5.12 4.26
23–24 3.45 5.99 7.92 7.98 7.92 6.44 6.27 5.56
35–36 2.98 3.76 5.96 6.50 6.16 4.15 4.88 4.49
46–47 3.39 4.61 6.40 6.61 6.27 5.48 5.89 5.30
47–48 69.68 57.07 45.64 40.53 32.36 22.80 19.96 12.95

Remaining game time 18.98 24.19 28.63 32.10 41.91 56.00 57.89 67.45
1 point 89.18 69.39 54.76 45.54 44.78 39.97 39.62 37.49
2 points 8.01 20.84 33.09 42.13 44.26 48.98 48.65 50.27
3 points 2.81 9.08 12.15 12.33 10.96 11.06 11.73 12.24

Table 4
Percentages of the type of points scored for a range of dt values, in CGs.

Points made dt (s)
0–4 4–6 7–15 16–23 24–60

1 point 94.02 43.73 47.55 39.77 38.56
2 points 3.77 39.68 38.05 47.73 47.02
3 points 2.19 16.58 14.38 12.48 14.40

4.1. Relevance of game time and scoring

We have analyzed the behavior of time differences between events, but it will be interesting to also analyze in detail,
when these time differences take place, and what kinds of points are associated with each time difference, especially in the
last minute.

Table 3 shows the percentage of events with the time difference between them, dt = 1, 2, . . . , 8 s; and the minute in
which they take place (column 1). Rows from 1 to 5 refer to specificminutes of the game. ‘‘Remaining game time’’ represents
the values for remaining minutes of the game. The last three rows display the result for the same time differences for each
type of point (1, 2 or 3).

Most event types with dt from 1 to 3 s take place in the last minute of the game. On the other hand, during the rest of
the game (Remaining Game Time row) the behavior is the opposite so that from dt = 4 the percentage increases.

Regarding the kind of point in each situation, from dt = 1 to 3 free throws are the main type. From dt = 5 the trend is
reversed, the percentage of 2 point shots starts to be greater than one point shots. This is reflected in the change of growth
around the central circle in the subplot of Fig. 4.

Table 4 shows the percentages of the types of points (1, 2 or 3) for selected dt time intervals only in CGs in the lastminute.
For time intervals between events dt < 4 s, in minute 48, most points are free throws. This means that teams use fouls in

order to stop the game with the aim of preserving time in order to score and reduce or maintain advantage. For 4 < dt < 6,
points are more balanced between free throws and two point shots. These time ranges could match with fastbreaks, where
players score by a dunk or lay-up, or even a three point basket, probably following coach instructions. The aim is to have
enough time to reduce the score advantage, in the case of the defending team, or take the lead from a rival failure and
increase the advantage, in the case of the attacking team. Obviously fouls take place, but in a fast break a foul seems less
likely than in other situations, although this is relative to score and remaining game time. For 7 < dt < 15 the case is very
similar to the previous one. The range 16 < dt < 23 is the one most associated with the 24 s possession rule. In this case it
seems that teams tend to retain the ball in order to ensure a good shot. But ball retention is not only an attacking strategy;
it is also a defensive strategy. Retaining the ball enables the team to prevent the rival team scoring. This is a remarkable
fact that can be the source of the homogeneous distribution for the range 16 < dt < 23 (figure with (◦)). We observe that
the percentage of two point shots is higher than any other; the three point shot percentage decreases from the previous
time range. Both situations indicate pre-established plays or coach instructions. The free throws correspond, probably, with
attempts to stop the time and dominate ball possession. We have to bear in mind that retention of the ball by the attacking
team can cause an increase in defensive intensity and probability of committing a foul by the defensive team.

As a final point, Fig. 5 indicates that the last minute of an NCG behaves the same as any other end of a quarter and, even,
like the rest of the game.

5. Conclusions

The Poisson distribution explainsmost points scored in any game, inmost game situations. But in CG, especially at critical
times such as the last minute, the number of points is distributed following a PL, possibly an avalanche phenomenon; there
are only a few such cases but they are adequately distributed among games and minute 48. Consequently the number of
basket scored in a defined time interval in basketball, seems to follow a mixture of two distributions.
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Therefore, the final score of close basketball games appears to depend on the last minute of the game. Furthermore, in
the final minute most of these events are associated with fouls such that the likelihood of obtaining time differences of a
second between them is high. The kinds of points seem to play a different role in the game. This is a characteristic of the
basketball game, where points obtained from fouls play a completely different role. In fact, from the complexity point of
view, free throws are emergent phenomena in a basketball game, where strategies or voluntary acts are involved with the
aim simply to stop the clock.

Furthermore, the 24-second rule dynamic changes at different times of the game, especially in the last minute of each
quarter and the final minute; which shows the effect the rule has on a competitive complex system, and how the elements
of the system have to deal with this to obtain an advantage. This time restriction increases complexity.We verify that indeed
rules do play an important role in non-linear complex systems. These changes affect game strategies, game dynamics, team
dynamics, training designs, etc. In fact this is widely studied in the Exercise and Sport Sciences.

Our results show that a basketball game can be considered a quasi-pure Poisson process, not only in close games where,
in general, the variance is somewhat lower than the mean, but also in non-close games. These kinds of games become
more predictable as the game progresses, due to the domain that one team is exerting on the other, even though the time
intervals between events and the types of scored points are completely random processes. Analyzing the reasons why one
team becomes dominant over another as game progresses is very interesting to the managers of this sport.

But in games of great rivalry, the matter is quite different. Teams have to work hard to keep within a reasonable distance
of the rival and, finally, confront the last minute: a completely different game. The behavior at this moment does not seem
to follow a Poisson process. The emergence of scaling laws seems to suggest that the system has some kind of underlying
dynamics that are different from the rest of the game, with possible avalanche phenomena and the emergence of different
game situations. In addition, unlike non-close games, the outcomes of these games at these moments are unpredictable.
Rivalry increases because it is still possible to win even though the score may not be favorable. Hence a well-coordinated
and effective defensive strategy rises up against the desperate attempts to break the defense of the team which is losing.

It is also noteworthy how some concepts or metaphors from complex systems seem to be involved in this system,
such as the Red Queen Hypothesis. But other models related to non-linear complex systems, such as ‘‘sandpile’’ models,
in Self-Organized Critically, could also be analyzed in the case of NBA basketball. Thus, a further study might help to better
understand these concepts and, in turn better, understand the problems of team sports.

The assertion attributed to Aristotle: ‘‘The whole is greater than the sum of its parts’’ could be translated in basketball to
‘‘minute 48 is more than the sum of 60 s’’, as all sport fans know and suffer.
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