All Things Complex Adaptive Systems (CAS)

by Matthew Oldham

Project maintained by moldham74 Hosted on GitHub Pages — Theme by mattgraham

Referenced Research Papers

Complex systems is general


Arthur, W. B. (2013). Complexity Economics: A Different Framework for Economic Thought. SFI WORKING PAPER, 2013-04–012.

Friedman, M. (1953). The Methodology of Positive Economics. In Essays in Positive Economics (Vol. 3). Chicago, Ill.: University of Chicago Press.

Kirman, A. P. (1992). Whom or What Does the Representative Individual Represent? Journal of Economic Perspectives, 6(2), 117–136.

Schumpeter, J. A. (1942). Capitalism, Socialism and Democracy. New York: Harper and Row.

Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99.

Tesfatsion, L., & Judd, K. L. (Eds.). (2006). Handbook of Computational Economics. Amsterdam Boston: Elsevier.

Van Valen, L. (1973). A New Evolutionary Law. Evolutionary Theory, 1, 1–30.


Cont, R. (2007). Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models. In Long Memory in Economics (pp. 289–309). Springer Berlin Heidelberg.

Farmer, J. D., Gallegati, M., Hommes, C., Kirman, A., Ormerod, P., Cincotti, S., … Helbing, D. (2012). A complex systems approach to constructing better models for managing financial markets and the economy. The European Physical Journal Special Topics, 214(1), 295–324.

Friedman, M. (1953). The Methodology of Positive Economics. In Essays in positive economics (Vol. 3). Chicago, Ill.: University of Chicago Press.

Johnson, N. F., Jefferies, P., & Hui, P. M. (2003). Financial Market Complexity. Oxford ; New York: Oxford University Press.

Lux, T., & Alfarano, S. (2016). Financial Power Laws: Empirical Evidence, Models, and Mechanisms. Chaos, Solitons & Fractals, 88, 3–18.

Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394.

Sornette, D. (2014). Physics and financial economics (1776–2014): puzzles, Ising and agent-based models. Reports on Progress in Physics, 77(6), 62001.


Scogings, C., & Hawick, K. (2012). An agent-based model of the Battle of Isandlwana (pp. 1–12). IEEE.

Trautteur, G., & Virgilio, R. (2003). An agent-based computational model for the Battle of Trafalgar: a comparison between analytical and simulative methods of research (pp. 377–382). IEEE Comput. Soc.


Bar-Eli, M., Avugos, S., & Raab, M. (2006). Twenty Years of “Hot Hand” Research: Review and Critique. Psychology of Sport and Exercise, 7(6), 525–553.

Clauset, A., Kogan, M., & Redner, S. (2015). Safe Leads and Lead Changes in Competitive Team Sports. Physical Review E, 91(6).

Gabel, A., & Redner, S. (2012). Random Walk Picture of Basketball Scoring. Journal of Quantitative Analysis in Sports, 8(1).

Martín-González, J. M., de Saá Guerra, Y., García-Manso, J. M., Arriaza, E., & Valverde-Estévez, T. (2016). The Poisson Model Limits in NBA Basketball: Complexity in Team Sports. Physica A: Statistical Mechanics and Its Applications, 464, 182–190.

McGarry, T., Anderson, D. I., Wallace, S. A., Hughes, M. D., & Franks, I. M. (2002). Sport Competition as a Dynamical Self-organizing System. Journal of Sports Sciences, 20(10), 771–781.

Merritt, S., & Clauset, A. (2014). Scoring dynamics across professional team sports: tempo, balance and predictability. EPJ Data Science, 3(1).